
||Jai Sri Gurudev||

Sri Adichunchanagiri Shikshana Trust®

BGS INSTITUTE OF TECHNOLOGY
(Affiliated to VTU Belagavi, Approved by AICTE, New Delhi)

BG Nagara – 571448 (Bellur Cross)

Nagamangala Taluk, Mandya District.

HDL LABORATORY

MANUAL 17ECL58

For

VII Semester B.E. E&CE

2019-2020

DEPARTMENT OF

ELECTRONICS AND COMMUNICATION ENGINEERING

Prepared by: Approved by:

1. Mr. Manojkumar S B, Asst. Prof Dr. M.B. Anandaraju

2. Ms. Srividya C N, Asst. Prof Head, Dept. ECE.

3. Mrs. Rashmi S, Asst. Prof

DEPARTMENT OF ELECTRONICS & COMMUNICATION

ENGINEERING

Vision:

To develop high quality engineers with technical knowledge, skills and ethics

in the area of Electronics and Communication Engineering to meet industrial

and societal needs.

Mission:

1. To provide high quality technical education with up-to-date infrastructure and

trained human resources to deliver the curriculum effectively in order to impart

technical knowledge and skills.

2. To train the students with entrepreneurship qualities, multidisciplinary

knowledge and latest skill sets as required for industry, competitive

examinations, higher studies and research activities.

3. To mould the students into professionally-ethical and socially-responsible

engineers of high character, team spirit and leadership qualities.

 Program Educational Objectives (PEO’S):

After 3 to 5 years of graduation, the graduates of Electronics and

Communication Engineering will –

1. Engage in industrial, teaching or any technical profession and pursue higher

studies and research.

2. Apply the knowledge of Mathematics, Science as well as Electronics and

Communication Engineering to solve social engineering problems.

3. Understand, Analyze, Design and Create novel products and solutions.

4. Display professional and leadership qualities, communication skills, team spirit,

multidisciplinary traits and lifelong learning aptitude.

 Program Specific Outcomes (PSO’S):

1. To apply the knowledge of Electronics and Communication Engineering as well

as automation tools to create electronic circuits, systems and solutions.

2. To collaborate effectively with Electronics and Information Technology

industries through internship, induction, technical seminar, technical project,

research, product design and development, industrial visit, staff training in order

to provide the actual industrial exposure to students and faculties.

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 1

COURSE OBJECTIVES

This laboratory course enables students to get practical experience in design, assembly,

testing and evaluation of:

• Familiarize with the CAD tool to write HDL programs.

• Understand simulation and synthesis of digital design.

• Program FPGAs/CPLDs to synthesize the digital designs.

• Interface hardware to programmable ICs through I/O ports.

• Choose either Verilog or VHDL for a given Abstraction level.

COURSE OUTCOMES

Students will be able to:

• Write the Verilog/VHDL programs to simulate Combinational circuits in Dataflow,
Behavioral and Gate level Abstractions.

• Describe sequential circuits like flip flops and counters in Behavioral description
and obtain simulation waveforms.

• Synthesize Combinational and Sequential circuits on programmable ICs and test
the hardware.

• Interface the hardware to the programmable chips and obtain the required output.

PROGRAMME SPECIFIC OUTCOMES

Graduates will be able to:

• Exhibit competency in embedded system domain.

• Exhibit competency in RF & Signal processing domain.

PROGRAMME EDUCATION OBJECTIVES

Graduates will be able to:

• Work as professionals in the area of Electronics and Allied Engineering fields.

• Pursue higher studies and involve in interdisciplinary research work.

• Exhibit ethics, professional skills and leadership qualities in their profession.

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 2

PROGRAMME OUTCOMES

Our graduates will be able to

1. Apply the knowledge of mathematics, science, engineering fundamentals, and an

engineering specialization to the solution of complex engineering problems.

2. Identify, formulate, review research literature, and analyze complex engineering

problems reaching substantiated conclusions using first principles of mathematics,

natural sciences, and engineering sciences.

3. Design solutions for complex engineering problems and design system components

or processes that meet the specified needs with appropriate consideration for the

public health and safety, and the cultural, societal, and environmental

considerations.

4. Use research-based knowledge and research methods including design of

experiments, analysis and interpretation of data, and synthesis of the information to

provide validconclusions.

5. Create, select, and apply appropriate techniques, resources, and modern engineering

and IT tools including prediction and modeling to complex engineering activities

with an understanding of the limitations.

6. Apply reasoning informed by the contextual knowledge to assess societal, health,

safety, legal and cultural issues and the consequent responsibilities relevant to the

professional engineeringpractice.

7. Understand the impact of the professional engineering solutions in societal and

environmental contexts, and demonstrate the knowledge of, and need for

sustainable development.

8. Apply ethical principles and commit to professional ethics and responsibilities and
norms of the engineering practice.

9. Function effectively as an individual, and as a member or leader in diverse teams, and

in multidisciplinary settings.

10. Communicate effectively on complex engineering activities with the engineering

community and with society at large, such as, being able to comprehend and write

effective reports and design documentation, make effective presentations, and give

and receive clear instructions.

11. Demonstrate knowledge and understanding of the engineering and management

principles and apply these to one’s own work, as a member and leader in a team, to

manage projects and in multidisciplinary environments.

12. Recognize the need for, and have the preparation and ability to engage in

independent and life-long learning in the broadest context of technological change.

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 3

CONTENTS:

Sl. Topic. Page No

1. Syllabus 5

2. Overview of Verilog HDL lab. 7

 PART-A

3. Verilog code to realize all logic gates 14

4. Verilog program for the following combination.
a. 2 to 4 decoder

b. 8 to 3 (encoder without priority & with priority)

c. 8 to 1 multiplexer.

d. 4 bit binary to gray converter

e. Multiplexer, de-multiplexer, comparator.

17

5. VHDL and Verilog code to describe the functions of a Full Adder

using three modeling styles.
38

6. Verilog code to model 32 bit ALU 45

7. Verilog code for the following flip-flops, SR, D, JK

and T

48

8. 4 bit binary, BCD counters (Synchronous reset and

Asynchronou reset) and “any sequence” counters, using Verilog

code.

58

 PART-B

1. Write HDL code to display messages on an alpha numeric LCD
display.

81

2. Write HDL code to interface Hex key pad and display the key

code on seven segment display.
85

3. Write HDL code to control speed, direction of DC and Stepper
motor.

90

4. Write HDL code to accept Analog signal, Temperature sensor

and display the data on LCD or Seven segment display.
95

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 4

5. Write HDL code to generate different waveforms (Sine, Square,

Triangle, Ramp etc.,) using DAC - change the frequency.
97

6. Write HDL code to simulate Elevator operation. 103

7. Beyond Syllabus: 8-Bit Ripple Carry Adder 108

7. Pin Ports 111

8. Viva questions 114

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 5

HDL Lab
B.E., V Semester, EC/TC

[As per Choice Based Credit System (CBCS) scheme]

Subject Code 17ECL58 CIE Marks 40

Number of Lecture
Hours/Week

01Hr Tutorial
(Instructions)
+ 02 Hours Laboratory=03

SEE Marks 60

RBT Levels L1, L2, L3 RBT Levels L1, L2, L3 Exam Hours 03 03

CREDITS – 02

Course objectives: This course will enable students to:
· Familiarize with the CAD tool to write HDL programs.
· Understand simulation and synthesis of digital design.
· Program FPGAs/CPLDs to synthesize the digital designs.
· Interface hardware to programmable ICs through I/O ports.
· Choose either Verilog or VHDL for a given Abstraction level.

Note: Programming can be done using any compiler. Download the programs on a
FPGA/CPLD boards such as Apex/Acex/Max/Spartan/Sinfi or equivalent and performance
testing may be done using 32 channel pattern generator and logic analyzer apart from
verification by simulation with tools such as Altera/Modelsim or equivalent.

Laboratory Experiments

Part–A: PROGRAMMING
1. Write Verilog code to realize all the logic gates
2. Write a Verilog program for the following combinational designs

a. 2 to 4 decoder
b. 8 to 3 (encoder without priority & with priority)
c. 8 to 1 multiplexer.
d. 4 bit binary to gray converter
e. Multiplexer, de-multiplexer, comparator.

3. Write a VHDL and Verilog code to describe the functions of a Full Adder using three
modeling styles.
4. Write a Verilog code to model 32 bit ALU using the schematic diagram shown

below

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 6

• ALU should use combinational logic to calculate an output based on the four-bit
op-code input.

• ALU should pass the result to the out bus when enable line in high, and tristate
the out bus when the enable line is low.

• ALU should decode the 4-bit op-code according to the example given below.

OPCODE ALU OPERATION

1 A+B

2 A-B

3 A Complement

4 A*B

5 A AND B

6 A OR B

7 A NAND B

8 A XOR B

5. Develop the Verilog code for the following flip-flops, SR, D, JK and T.
6. Design a 4-bit binary, BCD counters (Synchronous reset and Asynchronous reset) and “any

sequence” counters, using Verilog code.

Part–B: INTERFACING (at least four of the following must be covered
using VHDL/Verilog)
1. Write HDL code to display messages on an alpha numeric LCD display.
2. Write HDL code to interface Hex key pad and display the key code on seven segment display.

3. Write HDL code to control speed, direction of DC and Stepper motor.
4. Write HDL code to accept Analog signal, Temperature sensor and display the data on LCD or
Seven segment display.
5. Write HDL code to generate different waveforms (Sine, Square, Triangle, Ramp etc.,) using DAC
- change the frequency.
6. Write HDL code to simulate Elevator operation.

Course Outcomes: At the end of this course, students should be able to:
· Write the Verilog/VHDL programs to simulate Combinational circuits in Dataflow, Behavioral and
Gate level Abstractions.

· Describe sequential circuits like flip flops and counters in Behavioral description and obtain
simulation waveforms.

· Synthesize Combinational and Sequential circuits on programmable ICs and test the hardware.

· Interface the hardware to the programmable chips and obtain the required output.

Conduct of Practical Examination:
1. All laboratory experiments are to be included for practical examination.
2. Strictly follow the instructions as printed on the cover page of answer script for breakup

of marks.
3. Change of experiment is allowed only once and Marks allotted to the procedure part to

be made zero.

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 7

OVERVIEW OF HDL LAB

1. HDL

In electronics, a hardware description language or HDL is any language from a class

of Computer languages for formal description of electronic circuits. It can describe the

circuit's operation, its design and organization, and tests to verify its operation by means of

simulation

HDLs are standard text-based expressions of the spatial, temporal structure and behavior of

electronic systems. In contrast to a software programming language, HDL syntax, semantics

include explicit notations for expressing time and concurrency, which are the attributes of

hardware. Languages whose only characteristic is to express circuit connectivity between a

hierarchy of blocks are properly classified as netlist languages.

HDLs are used to write executable specifications of some piece of hardware. A simulation

program, designed to implement the underlying semantics of the language statements,

coupled with simulating the progress of time, provides the hardware designer with the

ability to model a piece of hardware before it is created physically. It is this execute ability

that gives HDLs the illusion of being programming languages. Simulators capable of

supporting discrete-event and continuous-time (analog) modeling exist, and HDLs targeted

for each are available. It is certainly possible to represent hardware semantics using

traditional programming languages such as C++, although to function such programs must

be augmented with extensive and unwieldy class libraries. Primarily, however, software

programming languages function as a hardware description language

Using the proper subset of virtually any language, a software program called a

synthesizer can infer hardware logic operations from the language statements and produce

an equivalent netlist of generic hardware primitives to implement the specified behavior.

This typically requires the synthesizer to ignore the expression of any timing constructs in

the text.

The two most widely-used and well-supported HDL varieties used in industry are

• VHDL (VHSIC HDL)

• Verilog

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 8

1.1Verilog

Verilog is a hardware description language (HDL) used to model electronic systems.

The language supports the design, verification, and implementation of analog, digital, and

mixed - signal circuits at various levels of abstraction the designers of Verilog wanted a

language with syntax similar to the C programming language so that it would be familiar to

engineers and readily accepted. The language is case- sensitive, has a preprocessor like C,

and the major control flow keywords, such as "if" and "while", are similar. The formatting

mechanism in the printing routines and language operators and their precedence are also

similar

The language differs in some fundamental ways. Verilog uses Begin/End instead of

curly braces to define a block of code. The concept of time, so important to a HDL won't be

found in C The language differs from a conventional programming language in that the

execution of statements is not strictly sequential. A Verilog design consists of a hierarchy of

modules are defined with a set of input, output, and bidirectional ports. Internally, a module

contains a list of wires and registers. Concurrent and sequential statements define the

behavior of the module by defining the relationships between the ports, wires, and registers

Sequential statements are placed inside a begin/end block and executed in sequential order

within the block. But all concurrent statements and all begin/end blocks in the design are

executed in parallel, qualifying Verilog as a Dataflow language. A module can also contain

one or more instances of another module to define sub-behavior

A subset of statements in the language is synthesizable. If the modules in a design

contains a netlist that describes the basic components and connections to be implemented

in hardware only synthesizable statements, software can be used to transform or synthesize

the design into the net list may then be transformed into, for example, a form describing the

standard cells of an integrated circuit (e.g. ASIC) or a bit stream for a programmable logic

device (e.g. FPGA).

2. DESIGN USING HDL

The vast majority of modern digital circuit design revolves around an HDL

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 9

description of the desired circuit, device, or subsystem Most designs begin as a written set

of requirements or a high-level architectural diagram. The process of writing the HDL

description is highly dependent on the designer's diagram. The process of writing the HDL

description is highly dependent on the designer’s background and the circuit’s nature. The

HDL is merely the 'capture language'–often begin with a high-level algorithmic description

such as MATLAB or a C++ mathematical model Control and decision structures are often

prototyped in flowchart applications, or entered in a state- diagram editor. Designers even

use scripting languages (such as PERL) to automatically generate repetitive circuit

structures in the HDL language. Advanced text editors (such as PERL) to automatically

generate repetitive circuit structures in the HDL language. Advanced text editors (such as

Emacs) offer editor templates for automatic indentation, syntax- dependent coloration,

and macro-based expansion of entity/architecture/signal declaration.

As the design's implementation is fleshed out, the HDL code invariably must undergo

code review, or auditing. In preparation for synthesis, the HDL description is subject to an

array of automated checkers. The checkers enforce standardized code guidelines, identifying

ambiguous code construct before they can cause misinterpretation by downstream synthesis,

and check for common logical coding errors, such as dangling ports or shorted outputs.

In industry parlance, HDL design generally ends at the synthesis stage. Once the

synthesis tool has mapped the HDL description into a gate net list, this net list is passed off to

the back - end stage. Depending on the physical technology (FPGA, ASIC gate-array, ASIC

standard- cell), HDLs may or may not play a significant role in the back-end flow. In general,

as the design flow progresses toward a physically realizable form, the design database

becomes progressively more laden with technology-specific information, which cannot be

becomes progressively more laden with technology-specific information, which cannot be

stored in a generic HDL-description. Finally, a silicon chip is manufactured in a fab.

3. SIMULATING AND DEBUGGING HDL CODE

Essential to HDL design is the ability to simulate HDL programs. Simulation allows an

HDL description of a design (called a model) to pass design verification, an important

milestone that validates the design's intended function (specification) against the code

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 10

implementation in the HDL description. It also permits architectural exploration. The

engineer can experiment with design choices by writing multiple variations of a base design,

then comparing their behavior in simulation. Thus, simulation is critical for successful HDL

design To simulate an HDL model, an engineer writes a top-level simulation environment

(called a test bench). At minimum, a test bench contains an instantiation of the model (called

the device under test or DUT), pin/signal declarations for the model’s I/O, and a clock

waveform. An HDL simulator–the program that executes the test bench– maintains the

simulator clock, which is the master reference for all events in the test bench simulation

Events occur only at the instants dictated by the test bench HDL, or in reaction to stimulus

and triggering events.

Design verification is often the most time-consuming portion of the design process,

due to the disconnect between a device's functional specification, the designer's

interpretation of the specification, and the imprecision of the HDL language. The majority of

the initial test/debug cycle is conducted in the HDL simulator environment, as the early stage

of the design is subject to frequent and major circuit changes. An HDL description can also be

prototyped and tested in hardware–programmable logic devices are often used for this

purpose. Hardware prototyping is comparatively more expensive than HDL simulation, but

offers a real-world view of the design. Prototyping is the best way to check interfacing against

other hardware devices, and hardware prototypes, even those running on slow FPGAs, offer

much faster simulation times than pure HDL simulation.

INTRODUCTION TO FPGA (FIELD PROGRAMMABLE GATE ARRAY)

FPGA contains a two-dimensional arrays of logic blocks and interconnections between logic

blocks. Both the logic blocks and interconnects are programmable. Logic blocks are

programmed to implement a desired function and the interconnects are programmed using

the switch boxes to connect the logic blocks. To implement a complex design (CPU for

instance), the design is divided into small sub functions and each sub function is implemented

using one logic block. All the sub functions implemented in logic blocks must be connected

and this is done by programming the interconnects.

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 11

INTERNAL STRUCTURE OF AN FPGA

FPGAs, alternative to the custom ICs, can be used to implement an entire System On one Chip

(SOC). The main advantage of FPGA is ability to reprogram. User can reprogram an FPGA to

implement a design and this is done after the FPGA is manufactured. This brings the name

“Field Programmable.”

Custom ICs are expensive and takes long time to design so they are useful when

produced in bulk amounts. But FPGAs are easy to implement within a short time with the help

of Computer Aided Designing (CAD) tools.

XILINX FPGA

Xilinx logic block consists of one Look Up Table (LUT) and one FlipFlop. An LUT is used

to implement number of different functionalities. The input lines to the logic block go into the

LUT and enable it. The output of the LUT gives the result of the logic function that it

implements and the output of logic block is registered or unregistered output from

the LUT.

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 12

4-input lut based implementation of logic block.

FPGA/ASIC DESIGN FLOW OVERVIEW

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 13

PART – A
HDL Experiments

Using
XILINX

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 14

EXPERIMENT NO: 01

NAME OF THE EXPERIMENT: Verilog code to realize all the logic gates

THEORY: A logic gate is an electronic circuit/device which makes the logical decisions

alternatively a logic gate performs a logical operation on one or more logic inputs and produces

a single logic output. The logic normally performed is Boolean logic and is most commonly

found in digital circuits. Logic gates are primarily implemented using diodes or transistors. The

logic gates are broadly classified into 3 types:

Basic gates::AND, OR, NOT / INVERTER

Universal gates:: NAND, NOR

Special gates:: XOR, XNOR

Logic diagram:

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 15

Truth Table:

Inputs Outputs

a_in b_in not_op and_op nand_op or_op nor_op xor_op xnor_op

0 0 1 0 1 0 1 0 1

0 1 1 0 1 1 0 1 0

1 0 0 0 1 1 0 1 0

1 1 0 1 0 1 0 0 1

Verilog code:

module gates(not_op, and_op, nand_op, or_op, nor_op, xor_op, xnor_op, a_in, b_in);

output not_op, and_op, nand_op, or_op, nor_op, xor_op, xnor_op;

input a_in, b_in;

assign not_op= ~a_in;

assign and_op=a_in&b_in;

assign nand_op=~(a_in&b_in);

assign or_op=a_in|b_in;

assign nor_op=~(a_in|b_in);

assign xor_op=a_in^b_in;

assign xnor_op=~(a_in^b_in);

endmodule

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 16

Result:

Staff’s Sign: Date:

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 17

EXPERIMENT NO: 02

NAME OF THE EXPERIMENT: Verilog program for the following

combinational designs.

A) 2 to 4 Decoder

Theory: A decoder is a multiple input, multiple output logic circuit that converts coded inputs

into coded outputs where the input and output codes are different. The enable inputs must be

ON for the decoder to function, otherwise its outputs assume a „disabled‟ output code word.

Decoding is necessary in applications such as data multiplexing, seven segment display and

memory address decoding. A decoder is a device which does the reverse operation of an

encoder, undoing the encoding so that the original information can be retrieved. The same

method used to encode is usually just reversed in order to decode. It is a combinational circuit

that converts binary information from n input lines to a maximum of 2n unique output lines.

Symbol:

Truth Table:

Inputs Outputs

En d_in [1] d_in [0] d_out[3] d_out[2] d_out[1] d_out[0]

1 x x z z z Z

0 0 0 0 0 0 1

0 0 1 0 0 1 0

0 1 0 0 1 0 0

0 1 1 1 0 0 0

http://en.wikipedia.org/wiki/Priority_encoder#Simple_encoder

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 18

Verilog code:

module decoder (d_op, d_in, en);

output [3:0] d_op;

input [1:0] d_in;

input en;

reg [3:0] d_op;

always @(d_in,en)

begin

if (en==1)

d_op=4’bzzzz;

end

else

case (d_in)

2'b00: d_op = 4'b0001;

2'b01: d_op = 4'b0010;

2'b10:d_op = 4'b0100;

2'b11: d_op = 4'b1000;

default: d_op = 4'bxxxx;

endcase

endmodule

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 19

Result:

Staff’s Sign: Date:

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 20

B). 8 to 3 Encoder:

THEORY: An encoder is a digital circuit which performs the inverse of decoder. An encoder

has 2N input lines and N output lines. In encoder the output lines generate the binary code

corresponding to input value. The decimal to BCD encoder usually has 10 input lines and 4

output lines. The decoder decimal data as an input for decoder an encoded BCD output is

available at 4 output lines. An encoder is a device, circuit, transducer, software program,

algorithm or person that converts information from one format or code to another, for the

purposes of standardization, speed, secrecy, security or compressions.

i) Without priority:

Symbol:

Truth Table

Inputs Outputs

en a_in[7] a_in[6] a_in[5] a_in[4] a_in[3] a_in[2] a_in[1] a_in[0] y_out[3] y_out[3] y_out[3]

0 X X x x x x x x z z z

1 0 0 0 0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 1 0 0 0 1

1 0 0 0 0 0 1 0 0 0 1 0

1 0 0 0 0 1 0 0 0 0 1 1

1 0 0 0 1 0 0 0 0 1 0 0

1 0 0 1 0 0 0 0 0 1 0 1

1 0 1 0 0 0 0 0 0 1 1 0

1 1 0 0 0 0 0 0 0 1 1 1

http://en.wikipedia.org/wiki/Encoding
http://en.wikipedia.org/wiki/Code

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 21

Verilog Code:

module encoder8_3(en, a_in, y_op);

input en;

input [7:0] a_in;

output [2:0] y_op;

reg [2:0] y_op;

always @ (a_in,en)

begin

if(en==1)

y_op =3’bzzz;

end

endmodule

else

case (a_in)

8'b00000001: y_op = 3'b000;

8'b00000010: y_op = 3'b001;

8'b00000100: y_op = 3'b010;

8'b00001000: y_op = 3'b011;

8'b00010000: y_op = 3'b100;

8'b00100000: y_op = 3'b101;

8'b01000000: y_op = 3'b110;

8'b10000000: y_op = 3'b111;

default: y_op =3'bxxx;

endcase

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 22

Result:

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 23

ii) With priority:

Symbol:

Truth Table:

Inputs Outputs

a_in[7] a_in[6] a_in[5] a_in[4] a_in[3] a_in[2] a_in[1] a_in[0] y_out[3] y_out[3] y_out[3]

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 x 0 0 1

0 0 0 0 0 1 x x 0 1 0

0 0 0 0 1 x x x 0 1 1

0 0 0 1 x x x x 1 0 0

0 0 1 x x x x x 1 0 1

0 1 X x x x x x 1 1 0

1 x X x x x x x 1 1 1

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 24

Verilog Code:

module prio_enco(en, a_in, y_op);

input en;

input [7:0] a_in;

output [2:0] y_op;

reg [2:0] y_op;

always @ (a_in,en)

begin

case (a_in)

8'b00000001: y_op = 3'b000;

8'b0000001x: y_op= 3'b001;

8'b000001xx: y_op= 3'b010;

8'b00001xxx: y_op= 3'b011;

8'b0001xxxx: y_op= 3'b100;

8'b001xxxxx: y_op= 3'b101;

8'b01xxxxxx: y_op= 3'b110;

8'b1xxxxxxx: y_op= 3'b111;

default: y_op=3'bxxx;

endcase

end

endmodule

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 25

Result:

Staff’s Sign: Date:

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 26

C). Multiplexer:

Theory: Multiplexer is a digital switch. It allows digital information from several sources to

be rooted on to a single output line. The basic multiplexer has several data input lines and a
single output line. The selection of a particular input line is controlled by a set of selection lines.
Normally there are 2N input lines and N selection lines whose bit combinations determine
which input is selected. Therefore multiplexer is many into one and it provides the digital
equivalent of an analog selector switch.

i). 8:1 Multiplexer:

Symbol:

Truth Table:

Select Inputs Inputs Outputs

sel

[2]

sel

[1]

sel

[0]

a_in

[7]

a_in

[6]

a_in

[5]

a_in

[4]

a_in

[3]

a_in

[2]

a_in

[1]

a_in

[0]
y_out

0 0 0 0 0 0 0 0 0 0 1 1

0 0 1 0 0 0 0 0 0 1 0 1

0 1 0 0 0 0 0 0 1 0 0 1

0 1 1 0 0 0 0 1 0 0 0 1

1 0 0 0 0 0 1 0 0 0 0 1

1 0 1 0 0 1 0 0 0 0 0 1

1 1 0 0 1 0 0 0 0 0 0 1

1 1 1 1 0 0 0 0 0 0 0 1

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 27

Verilog Code:

module mux8_1(i_in, sel, y_out);

input [7:0] a_in;

input [2:0] sel;

output y_out;

regy_out;

always@ (i_in,sel)

begin

case (sel)

3'b000:y_out=i_in[0];

3'b001: y_out=i_in[1];

3'b010: y_out=i_in[2];

3'b011: y_out=i_in[3];

3'b100: y_out=i_in[4];

3'b101: y_out=i_in[5];

3'b110: y_out=i_in[6];

3'b111: y_out=i_in[7];

default: y_out =3'b000;

endcase

end

endmodule

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 28

Result:

Staff’s Sign: Date:

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 29

D). De-Multiplexer:

Theory: A De-multiplexer is a circuit that receives information on a single line and transmits

this information on one of 2N output lines. The selection of specific output lines is controlled by

the value of N selection lines. The single input variable din as a path to all 4 outputs but the

input information is directed to only one of the output lines.

i).1:4 De-Multiplexer:

Symbol:

Truth Table:

Inputs Outputs

sel[1] sel[0] a_in
y-

_out[3]

y-

_out[2]

y-

_out[1]

y-

_out[0]

0 0 1 0 0 0 1

0 1 1 0 0 1 0

1 0 1 0 1 0 0

1 1 1 1 0 0 0

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 30

Verilog Code:

module demux1_4(a_in, sel, y_out);

input a_in;

input [1:0] sel;

output [3:0] y_out;

reg [3:0] y_out;

always @(a_in, sel)

begin

case (sel)

2’b00:begin y_out[0]=a_in; y_out[1]= 1’b0;

y_out[2]= 1’b0;y_out[3]=1’b0; end

2'b01: begin y_out[0]= 1’b0;y_out[1]=a_in;

y_out[2]= 1’b0;y_out[3]=1’b0; end

2'b10: begin y_out[0]= 1’b0;y_out[1]=1’b0;

y_out[2]=a_in; y_out[3]=1’b0; end

2'b11: begin y_out[0]= 1’b0; y_out[1]= 1’b0;

y_out[2]=1’b0;y_out[3]=a_in; end

default: y_out=3'b000;

endcase

end

endmodule

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 31

Result:

Staff’s Sign: Date:

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 32

E). 4-Bit Comparator:

Theory: Comparator is a special combinational circuit designed primarily to compare the

relative magnitude of 2 binary numbers. It receives 2N bit numbers A and B as inputs and the

outputs are A>B, A=B and A<B. Depending upon the relative magnitudes of the 2 numbers one

the outputs will be high.

Symbol:

Truth Table:

Inputs

Outputs

a_in>b_in a_in = b_in a_in<b_in

a_in b_in g_op e_op l_op

1100 0011 1 0 0

0110 0110 0 1 0

1000 1110 0 0 1

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 33

Verilog Code:

module comparator(a_in, b_in, L_op,g_op,e_op);

input [3:0] a_in;

input [3:0] b_in;

output L_op;

output g_op;

output e_op;

regL_op,g_op,e_op;

always @ (a_in,b_in)

begin

if (a_in<b_in)

L_op=1'b1;

else

L_op=1'b0;

if (a_in>b_in)

g_op=1'b1;

else

g_op=1'b0;

if (a_in==b_in)

e_op=1'b1;

end

endmodule

else

e_op=1'b0;

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 34

Result:

Staff’s Sign: Date:

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 35

F). 4-Bit Binary to Gray Converter:

Theory: The Gray code is unweighted and is not an arithmetic code: that is there are no

specific weights assigned to the bit positions. The important feature of the gray code is that it

exhibits only a single bit change from one code word to the next in sequence. This property is

important in many applications, such as shaft position encoders, where error susceptibility

increases with the number of bit changes between adjacent numbers in a sequence.

Symbol: Logic diagram Boolean equation:

Truth Table:

Inputs Outputs

Decimal
Binary Gray

b_in[3] b_in[2] b_in[1] b_in[0] g_in[3] g_in[2] g_in[1] g_in[0]

0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1

2 0 0 1 0 0 0 1 1

3 0 0 1 1 0 0 1 0

4 0 1 0 0 0 1 1 0

5 0 1 0 1 0 1 1 1

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 36

6 0 1 1 0 0 1 0 1

7 0 1 1 1 0 1 0 0

8 1 0 0 0 1 1 0 0

9 1 0 0 1 1 1 0 1

10 1 0 1 0 1 1 1 1

11 1 0 1 1 1 1 1 0

12 1 1 0 0 1 0 1 0

13 1 1 0 1 1 0 1 1

14 1 1 1 0 1 0 0 1

15 1 1 1 1 1 0 0 0

Verilog Code:

module binary_gray(b_in, g_op);

input [3:0] b_in;

output [3:0] g_op;

assigng_op[3] = b_in[3];

assigng_op[2] = b_in[3] ^ b_in[2];

assigng_op[1] = b_in[2] ^ b_in[1];

assigng_op[0] = b_in[1] ^ b_in[0];

endmodule

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 37

Result:

Staff’s Sign: Date:

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 38

EXPERIMENT NO 3:

NAME OF THE EXPERIMENT: VHDL & Veilog code to describe the functions
of a Full adder.

THEORY: The full-adder circuit adds three one-bit binary numbers (C A B) and outputs two

one-bit binary numbers, a sum (S) and a carry (C1). The full-adderis usually a component in a

cascade of adders, which add 8, 16, 32, etc. binary numbers.

Symbol:

Logic diagram:

Boolean equations:

sum = a_in⊕b_in⊕c_in

carry= (a_in.b_in)+(b_in.c_in)+(a_in.b_in)

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 39

Truth Table:

VHDL Code:

Data flow:

entity fulladder is

port (a_in, b_in, c_in: in std_logic;

sum, carry: out std_logic);

end fulladder;

architecture dataflow of fulladder is

begin

sum<= a_inxorb_inxorc_in;

carry<= (a_in and b_in) or (b_in and c_in) or (a_in andb_in);

end dataflow;

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 40

Behavioural:

entity fulladder is

port (abc: instd_logic_vector(2 downto 0);

sum, carry: out std_logic);

end fulladder;

architecture behavioral of fulladder is

begin

process(abc)

begin

end ;

case (abc) is

when”000”=>sum<=’0’; carry<=’0’;

when”001”=>sum<=’1’; carry<=’0’;

when”010”=>sum<=’1’; carry<=’0’;

when”011”=>sum<=’0’; carry<=’1’;

when”100”=>sum<=’1’; carry<=’0’;

when”101”=>sum<=’0’; carry<=’1’;

when”110”=>sum<=’0’; carry<=’1’;

when”111”=>sum<=’1’; carry<=’1’;

when others=>null;

end case;

end process;

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 41

Structural:

entity fulladder is

port (a_in, b_in, c_in: in std_logic;

sum, carry: out std_logic);

end fulladder;

architecture structural of fulladder is

component halfadder is

port (p, q: in std_logic;

r, s: out std_logic);

end component;

signal temp1, temp2, temp3: std_logic;

begin

ha1: halfadder port map (a_in, b_in, temp1,temp2);

ha2: halfadder port map (temp1, c_in, sum, temp3);

carry<=temp2 or temp3;

end structural;

COMPONENT PROGRAM:

entity halfadder is

port (p, q: in std_logic;

r, s: out std_logic);

end halfadder;

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 42

architecture dataflow of halfadder is

begin

r<= p xor q;

s<= p and q;

end;

Verilog Code:

Data flow:

module fulladder(a_in, b_in, c_in, sum, carry);

input a_in, b_in,c_in;

output sum, carry;

assign sum = a_in^b_in^c_in;

assign carry = (a_in&b_in)|(b_in&c_in)|(a_in&c_in);

endmodule

Behavioural:

module fulladder(abc, sum, carry);

input [2:0] abc;

output sum,carry;

reg sum,carry;

always@(abc)

begin

case (abc)

3’b000:begin sum=1’b0; carry=1’b0;end

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 43

3’b001:begin sum=1’b1; carry=1’b0;end

3’b010:begin sum=1’b1; carry=1’b0;end

3’b011:begin sum=1’b0; carry=1’b1;end

3’b100:begin sum=1’b1; carry=1’b0;end

3’b101:begin sum=1’b0; carry=1’b1;end

3’b110:begin sum=1’b0; carry=1’b1;end

3’b111:begin sum=1’b1; carry=1’b1;end

endcase

 end

 endmodule

Structural:

Module fulladder(a_in, b_in, c_in, sum, carry);

Input a_in,b_in, c_in;

Output sum,carry;

wire temp1, temp2, temp3;

halfadder ha1 (a_in, b_in, temp1, temp2);

halfadder ha2 (c_in, temp1, sum, temp3);

assign carry= temp3 | temp2;

endmodule

module halfadder(a, b, s, c);

input a, b;

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 44

output s, c;

assign s= a^b;

assign c= a &b;

endmodule

Result:

Staff’s Sign: Date:

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 45

EXPERIMENT NO 4:

NAME OF THE EXPERIMENT: Verilog code to model 32-bit ALU using the
schematic diagram shown below.

• ALU should use combinational logic to calculate an output based on the four

bit op-code input.

• ALU should pass the result to the out bus when enable line in high, and tristate

the out bus when the enable line is low.

• ALU should decode the 4 bit op-code according to the example given below.

OPCODE ALU OPERATION

1 A+B

2 A-B

3 A Complement

4 A*B

5 A AND B

6 A OR B

7 A NAND B

8 A XOR B

Theory: An ALU is a fundamental building block of many types of computing circuits,

including the central processing unit (CPU) of computers, FPUs, and graphics processing

units (GPUs). A single CPU, FPU or GPU may contain multiple ALUs

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 46

Verilog Code:

module alu(a, b, sel,en,y,y_mul);

input [31:0] a;

input [31:0] b;

input en;

input [2:0] sel;

output [31:0] y;

output[63:0]y_mul;

reg [31:0] y;

reg [63:0] y_mul;

always @(a, b , sel)

begin

if (en==1)

case (sel)

3'b000:y=a+b;

3'b001:y=a-b;

3'b010:y=~a;

3'b011:y_mul=a*b;

3'b100:y= a&b;

3'b101:y=a|b;

3'b110:y=~(a&b);

3'b111:y=a^b;

default:begin end

endcase

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 47

else

begin

end

end

endmodule

Result:

y=32’bz;

y_mul=64’bz

Staff’s Sign: Date:

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 48

EXPERIMENT NO 5:

NAME OF THE EXPERIMENT: Verilog code for the following flip-flops, SR, D,
JK,T.

A). SR Flip-flop:

Theory: A basic NAND gate SR flip-flop circuit provides feedback from both of its outputs

back to its opposing inputs and is commonly used in memory circuits to store a single data

bit. Then the SR flip-flop actually has three inputs, Set, Reset and its current output Q

relating to it's current state or history.

Symbol:

 Truth Table:

Inputs outputs

rst Clk s r q qb Action

1 ↑ x x q qb No Change

0 ↑ 0 0 q qb No Change

0 ↑ 0 1 0 1 Reset

0 ↑ 1 0 1 0 Set

0 ↑ 1 1 - - Illegal

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 49

 Verilog Code:

module sr_ff(sr, clk, rst, q, qb);

input [1:0]sr;

input rst, clk;

output q,qb;

reg q,qb;

always @ (posedgeclk)

begin

if (rst==1)

begin

end

else

q=0;

qb=1;

end

endmodule

case (sr)

2'b00: begin q=q; qb=qb; end

2'b01: begin q=0; qb=1; end

2'b10: begin q=1; qb=0; end

2'b11: begin q=1'bx; qb=1'bx; end

default:begin end

endcase

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 50

Result:

Staff’s Sign: Date:

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 51

B). J-K Flip flop:

Theory: The JK flip flop is basically a gated SR flip-flop with the addition of a clock input

circuitry that prevents the illegal or invalid output condition that can occur when both inputs

S and R are equal to logic level “1”.

Symbol:

 Truth Table:

Inputs outputs

rst clk j k q qb Action

1 ↑ x x q qb No Change

0 ↑ 0 0 q qb No Change

0 ↑ 0 1 0 1 Reset

0 ↑ 1 0 1 0 Set

0 ↑ 1 1 q| qb| Toggle

Verilog Code:

module jk_ff(j, k, clk, reset, q, qb);

input [1:0]jk;

input clk,rst;

output q, qb;

reg q, qb;

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 52

reg [22:0] div;

reg clkdiv;

always @ (posedge clk)

begin

end

div = div+1'b1;

clkdiv = div[22];

always @ (posedge clkdiv) begin

begin

end

if(rst==1)

q=0;

qb=1;

else

case (jk)

2'b00: begin q=q; qb=qb; end

2'b01: begin q=0; qb=1; end

2'b10: begin q=1; qb=0; end

2'b11: begin q=~(q); qb=~(qb); end

default: begin end

endcase

end

endmodule

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 53

Result:

Staff’s Sign: Date:

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 54

C). T-Flip flop:

Theory: The T flip flop is the modified form of JKflip flop. The Q and Q' represents the

output states of the flip-flop. According to the table, based on the input the output changes

its state. But, the important thing to consider is all these can occur only in the presence of the

clock signal.

Symbol:

Truth Table:

Inputs Outputs

Rst clk t q qb Action

1 ↑ x q qb No Change

0 ↑ 0 q qb No Change

0 ↑ 1 q| qb| Toggle

Verilog Code:

module t_ff(t, clk, rst, q, qb);

input t, clk, rst;

output q, qb;

reg q,qb;

always @ (posedge clk)

begin

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 55

end

div = div+1'b1;

clkdiv = div[22];

always @ (posedge clkdiv)

begin

begin

end

end

if (rst==1)

q=0;

qb=1;

else

case (t)

1’b0:begin q=q; qb=qb; end

1’b1:begin q=~(q); qb=~(qb); end

default: begin end

endcase

endmodule

Result:

Staff’s Sign: Date:

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 56

D). D-Flip flop:

Theory: The D flip-flop tracks the input, making transitions with match those of the input

D. The D stands for "data"; this flip-flop stores the value that is on the data line. It can be

thought of as a basic memory cell. A D flip-flop can be made from a set/reset flip-flopby

tying the set to the reset through an inverter.

Symbol:

Truth Table:

Inputs Outputs

Rst clk d q qb Action

1 ↑ x q qb No Change

0 ↑ 0 0 1 q=d

0 ↑ 1 1 0 q=d

Verilog Code:

module d_ff(d, rst, clk, q, qb);

input d;

input rst;

input clk;

output q;

output qb;

reg q,qb;

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 57

always@(posedge clk)

begin

if (rst==1)

begin

end

endmodule

Result:

end

else

begin

end

q=0;

qb=1;

q=d;

qb=~d;

Staff’s Sign: Date:

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 58

EXPERIMENT NO 6:

NAME OF THE EXPERIMENT: Counters

AIM: Design a 4 bit binary, BCD counters(Synchronous reset and
asynchronous reset) and “any sequence” counters, using verilog
code.

A). Binary Synchronous counters:

Theory: A synchronous circuit is a digital circuit in which the changes in the state of

memory elements are synchronized by a clock signal. In a sequential digital logic circuit, data
is stored in memory devices called flip-flops or latches.(0-15)

Symbol:

i). Up Counter:

Truth Table:

Rst clk A B C D
1 1 0 0 0 0
0 1 0 0 0 1
0 1 0 0 1 0
0 1 0 0 1 1
0 1 0 1 0 0
0 1 0 1 0 1
0 1 0 1 1 0
0 1 0 1 1 1
0 1 1 0 0 0
0 1 1 0 0 1
0 1 1 0 1 0
0 1 1 0 1 1
0 1 1 1 0 0
0 1 1 1 0 1

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 59

0 1 1 1 1 0
0 1 1 1 1 1

Verilog Code:

module bin_up(rst,clk,count)

input clk,rst;

output[3:0] count;

reg[3:0]count;

initial

begin

count=4’b0000;

end

always@(posedge clk)

begin

if(rst)

count=4’b0000;

else

count=count+4’b0001;

end

endmodule

Result:

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 60

ii). Down Counter:

Truth Table:

Rst clk A B C D
1 1 1 1 1 1
0 1 1 1 1 0
0 1 1 1 0 1
0 1 1 1 0 0
0 1 1 0 1 1
0 1 1 0 1 0
0 1 1 0 0 1
0 1 1 0 0 0
0 1 0 1 1 1
0 1 0 1 1 0
0 1 0 0 1 1
0 1 0 0 1 0
0 1 0 0 1 1
0 1 0 0 1 0
0 1 0 0 0 1
0 1 0 0 0 0

Verilog Code:

module bin_down(rst,clk,count)

input clk,rst;

output[3:0] count;

reg[3:0]count;

initial

begin

count=4’b1111;

end

always@(posedge clk)

begin

if(rst)

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 61

count=4’b0000;

else

count=count-4’b0001;

end

endmodule

Result:

iii).Up-Down counter:

Verilog Code:

module updown-counter(clk,rst,updown,count);

input clk,rst,updown;

output[3:0]count;

reg[3:0]count;

always@(posedge clk)

begin

if(rst)

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 62

count<=4’b0000;

else

if(updown==1)

if(count==4’b1111)

count<=4’b0000;

else

count<=count+4’b0001;

else

count<=4’b1111;

else

count<=count-4’b0001;

end

endmodule

Result:

Staff’s Sign: Date:

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 63

B). Binary Asynchronous Counters:

Theory: This type of circuit is contrasted with synchronous circuits, in which changes to

the signal values in the circuit are triggered by repetitive pulses called a clock signal.

Mostdigital devices today use synchronous circuits Asynchronous circuits are an active

area of research indigital logic design.(0-15)

Symbol:

i). Up-Counter:

Truth Table:

Rst Clk A B C D
1 1 0 0 0 0
0 1 0 0 0 1
0 1 0 0 1 0
0 1 0 0 1 1
0 1 0 1 0 0
0 1 0 1 0 1
0 1 0 1 1 0
0 1 0 1 1 1
0 1 1 0 0 0
0 1 1 0 0 1
0 1 1 0 1 0
0 1 1 0 1 1
0 1 1 1 0 0
0 1 1 1 0 1
0 1 1 1 1 0
0 1 1 1 1 1

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 64

Verilog Code:

module bin_up(rst,clk,count)

input clk,rst;

output[3:0] count;

reg[3:0]count;

initial

begin

count=4’b0000;

end

always@(posedge clk or posedge rst)

begin

if(rst)

count=4’b0000;

else

count=count+4’b0001;

end

endmodule

Result:

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 65

ii). Down-Counter:

Truth Table:

Rst Clk A B C D
1 1 1 1 1 1
0 1 1 1 1 0
0 1 1 1 0 1
0 1 1 1 0 0
0 1 1 0 1 1
0 1 1 0 1 0
0 1 1 0 0 1
0 1 1 0 0 0
0 1 0 1 1 1
0 1 0 1 1 0
0 1 0 0 1 1
0 1 0 0 1 0
0 1 0 0 1 1
0 1 0 0 1 0
0 1 0 0 0 1
0 1 0 0 0 0

Verilog Code:

module bin_down(rst,clk,count)

input clk,rst;

output[3:0] count;

reg[3:0]count;

initial

begin

count=4’b1111;

end

always@(posedge clk or posedge rst)

begin

if(rst)

count=4’b0000;

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 66

else

count=count-4’b0001;

end

endmodule

Result:

iii). Up-Down Counter:

Verilog Code:

module updown-counter(clk,rst,updown,count);

input clk,rst,updown;

output[3:0]count;

reg[3:0]count;

always@(posedge clk or posedge rst)

begin

if(rst)

count<=4’b0000;

else

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 67

if(updown==1)

if(count==4’b1111)

count<=4’b0000;

else

count<=count+4’b0001;

else

count<=4’b1111;

else

count<=count-4’b0001;

end

endmodule

Result:

Staff’s Sign: Date:

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 68

C). BCD Synchronous Counter:

Theory: : A synchronous circuit is a digital circuit in which the changes in the state of
memory elements are synchronized by a clock signal. In a sequential digital logic circuit, data
is stored in memory devices called flip-flops or latches.(0-9)

Symbol

i). Up-Counter:

Truth Table:

Rst clk A B C D
1 1 0 0 0 0
0 1 0 0 0 1
0 1 0 0 1 0
0 1 0 0 1 1
0 1 0 1 0 0
0 1 0 1 0 1
0 1 0 1 1 0
0 1 0 1 1 1
0 1 1 0 0 0
0 1 1 0 0 1

Verilog Code:

module bdc_up(rst,clk,count)

input clk,rst;

output[3:0] count;

reg[3:0]count;

initial

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 69

begin

count=4’b0000;

end

always@(posedge clk)

begin

if(rst)

count=4’b0000;

else if

(count<=4’b1001)

count=count+4’b0001;

else

count=4’b0000;

end

endmodule

Result:

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 70

ii). Down-Conter:

Truth Table:

Rst Clk A B C D
1 1 1 0 0 1
0 1 1 0 0 0
0 1 0 1 1 1
0 1 0 1 1 0
0 1 0 0 1 1
0 1 0 0 1 0
0 1 0 0 1 1
0 1 0 0 1 0
0 1 0 0 0 1
0 1 0 0 0 0

Verilog Code:

module bdc_down(rst,clk,count)

input clk,rst;

output[3:0] count;

reg[3:0]count;

initial

begin

count=4’b1001;

end

always@(posedge clk)

begin

if(rst)

count=4’b0000;

else if

(count<=4’b1001)

count=count-4’b0001;

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 71

else

count=4’b1001;

end

endmodule

Result:

iii). Up-Down Counter:

Verilog Code:

module updown-counter(clk,rst,updown,count);

input clk,rst,updown;

output[3:0]count;

reg[3:0]count;

always@(posedge clk)

begin

if(rst)

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 72

count<=4’b0000;

else

if(updown==1)

if(count==4’b1001)

count<=4’b0000;

else

count<=count+4’b0001;

else

if(count==0)

count<=4’b1001;

else

count<=count-4’b0001;

end

endmodule

Result:

Staff’s Sign: Date:

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 73

D) BCD Asynchronous Counter:

Theory: This type of circuit is contrasted with synchronous circuits, in which changes to

the signal values in the circuit are triggered by repetitive pulses called a clock signal.

Most digital devices today use synchronous circuits ... Asynchronous circuits are an active

area of research in digital logic design.(0-9).

Symbol :

i). Up-Counter:

Truth Table:

Rst Clk A B C D
1 1 0 0 0 0
0 1 0 0 0 1
0 1 0 0 1 0
0 1 0 0 1 1
0 1 0 1 0 0
0 1 0 1 0 1
0 1 0 1 1 0
0 1 0 1 1 1
0 1 1 0 0 0
0 1 1 0 0 1

Verilog Code:

module bdc_up(rst,clk,count)

input clk,rst;

output[3:0] count;

reg[3:0]count;

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 74

initial

begin

count=4’b0000;

end

always@(posedge clk or posedge rst)

begin

if(rst)

count=4’b0000;

else if

(count<=4’b1001)

count=count+4’b0001;

else

count=4’b0000;

end

endmodule

Result:

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 75

ii) Down Counter:

Truth Table:

Rst clk A B C D
1 1 1 0 0 1
0 1 1 0 0 0
0 1 0 1 1 1
0 1 0 1 1 0
0 1 0 0 1 1
0 1 0 0 1 0
0 1 0 0 1 1
0 1 0 0 1 0
0 1 0 0 0 1
0 1 0 0 0 0

Verilog Code:

module bdc_down(rst,clk,count)

input clk,rst;

output[3:0] count;

reg[3:0]count;

initial

begin

count=4’b1001;

end

always@(posedge clk or posedge rst)

begin

if(rst)

count=4’b0000;

else if

(count<=4’b1001)

count=count-4’b0001;

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 76

else

count=4’b1001;

end

endmodule

Result:

iii) Up-Down Counter:

Verilog Code:

module updown-counter(clk,rst,updown,count);

input clk,rst,updown;

output[3:0]count;

reg[3:0]count;

always@(posedge clk or posedge rst)

begin

if(rst)

count<=4’b0000;

else

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 77

if(updown==1)

if(count==4’b1001)

count<=4’b0000;

else

count<=count+4’b0001;

else

if(count==0)

count<=4’b1001;

else

count<=count-4’b0001;

end

endmodule

Result:

Staff’s Sign: Date:

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 78

E). Any sequence:

Verilog Code:

module any-seq(rst,clk,updown,load,din,count);

input rst,clk,updown,load;

input[3:0]din;

output[3:0]count;

reg[3:0]count;

initial

begin

count=4’b0000;

end

always@(posedge clk)

if(rst)

count=4’b0000;

else if(load)

count=din;

else if(updown)

count=count+4’b0001;

else

count=count-4’b0001;

end

endmodule

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 79

Result:

Staff’s Sign: Date:

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 80

PART-B

HDL Experiments

using Spartan

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 81

EXPERIMENT NO 1:

NAME OF THE EXPERIMENT: LCD Display

AIM: HDL Code to display messages on an alpha numeric LCD.

THEORY: A liquid-crystal display (LCD) is a flat-panel display or other electronically

modulated optical device that uses the light-modulating properties of liquid crystals. Liquid

crystals do not emit light directly, instead using a backlight or reflector to produce images in

color or monochrome

CODE:

module LCD_DEMO(

input P_Clk,

output reg LCD_RS,LCD_EN,

output reg [7:0] P_LCD

);

parameter Length = 53;

reg [32:0] delay = 32'hFFFFFFFF;

integer pointer = 0;

wire [8:0] memory[0:Length-1];

assign memory[0] = {1'b0,8'h38};

assign memory[1] = {1'b0,8'h06};

assign memory[2] = {1'b0,8'h0C};

assign memory[3] = {1'b0,8'h01};

assign memory[20] = {1'b1,"*"};

https://en.wikipedia.org/wiki/Flat_panel_display
https://en.wikipedia.org/wiki/Electro-optic_modulator
https://en.wikipedia.org/wiki/Electro-optic_modulator
https://en.wikipedia.org/wiki/Liquid_crystal
https://en.wikipedia.org/wiki/Backlight
https://en.wikipedia.org/wiki/Reflector_(photography)
https://en.wikipedia.org/wiki/Monochrome

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 82

assign memory[21] = {1'b1,"*"};

assign memory[22] = {1'b1," "};

assign memory[23] = {1'b1,"W"};

assign memory[24] = {1'b1,"E"};

assign memory[25] = {1'b1,"L"};

assign memory[26] = {1'b1,"C"};

assign memory[27] = {1'b1,"O"};

assign memory[28] = {1'b1," M"};

assign memory[29] = {1'b1," E"};

assign memory[30] = {1'b1," "};

assign memory[31] = {1'b1,"T"};

assign memory[32] = {1'b1,"O"};

assign memory[33] = {1'b1," "};

assign memory[34] = {1'b1,"*"};

assign memory[35] = {1'b1,"* "};

// Shift to second Line of LCD

assign memory[36] = {1'b0,8'hC0};

// Character that should be displayed on the LCD.

assign memory[37] = {1'b1,"B"};

assign memory[38] = {1'b1,"G"};

assign memory[39] = {1'b1,"S"};

assign memory[40] = {1'b1,"I"};

assign memory[41] = {1'b1,"T"};

assign memory[42] = {1'b1," "};

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 83

assign memory[43] = {1'b1," "};

assign memory[44] = {1'b1,"B"};

assign memory[45] = {1'b1,"G"};

assign memory[46] = {1'b1," "};

assign memory[47] = {1'b1," N"};

assign memory[48] = {1'b1,"A"};

assign memory[49] = {1'b1,"G"};

assign memory[50] = {1'b1,"A"};

assign memory[51] = {1'b1,"R"};

assign memory[52] = {1'b1," "};

always @(posedge P_Clk)

begin

counter = counter + 1;

if(pointer > Length)

LCD_EN = 'b0;

else

LCD_EN = counter[15];

end

always @(negedge LCD_EN)

begin

LCD_RS = memory[pointer][8];

P_LCD = memory[pointer][7:0];

pointer = pointer + 1;

end

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 84

endmodule

Result:

Staff’s Sign: Date:

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 85

EXPERIMENT NO: 2

NAME OF THE EXPERIMENT: HEX KEYPAD

AIM: HDL Code to interface Hex key pad and display the key code on seven segment display.

THEORY: The hex keypad is a peripheral that connects to the DE2 through JP1 or JP2 via a 40-

pin ribbon cable. It has 16 buttons in a 4 by 4 grid, labeled with the hexadecimal digits 0 to F.

An example of this can been seen in Figure 7.1, below. Internally, the structure of the hex

keypad is very simple. Wires run in vertical columns (we call them C0 to C3) and in horizontal

rows (called R0 to R3). These 8 wires are available externally, and will be connected to the

lower 8 bits of the port. Each key on the keypad is essentially a switch that connects a row wire

to a column wire. When a key is pressed, it makes an electrical connection between the row

and column. The internal structure of the hex keypad is shown in Figure7. 2. The specific

mapping of hex keypad wires (C0 to C3 and R0 to R3) to pins is given n Table 7.1.

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 86

Table 7.1: Hex key pad pin details

At this point, you may be wondering exactly where the signals on the hex keypad come from.

The keys just create a short between a row and column wire when pressed, but the row and

column wires all come from JP1 or JP2, rather than connecting to power or ground.

CODE:

module HEX_KEYPAD(

input P_Clk,

input [3:0] MK_IN, //Row In

output reg [3:0] MK_OUT, // Col Out

output reg [3:0] P_dig, // anode signals of the 7-segment LED display

output reg [7:0] P_7seg // cathode patterns of the 7-segment LED display

);

reg [2:0] state = 0;

reg [7:0] count = 0;

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 87

reg clk = 0;

always @(posedge P_Clk)

begin

if(count >= 50)

begin

clk = ~clk;

count = 0;

end

else count = count + 1;

end

always @(posedge clk)

begin

P_dig = 'b0001;

case (state)

0: begin

P_7seg = 'b11111111; //null

MK_OUT = 'b1000;

state = 1;

end

1: begin

if (MK_IN == 'b1000) P_7seg = 'b10001000; //0

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 88

if (MK_IN == 'b0100) P_7seg = 'b11101011; //1

if (MK_IN == 'b0010) P_7seg = 'b01001100; //2

if (MK_IN == 'b0001) P_7seg = 'b01001001; //3

end

MK_OUT = 'b0100;

state = 2;

2: begin

if (MK_IN == 'b1000) P_7seg = 'b00101011; //4

if (MK_IN == 'b0100) P_7seg = 'b00011001; //5

if (MK_IN == 'b0010) P_7seg = 'b00011000; //6

if (MK_IN == 'b0001) P_7seg = 'b11001011; //7

end

MK_OUT = 'b0010;

state = 3;

3: begin

if (MK_IN == 'b1000) P_7seg = 'b00001000; //8

if (MK_IN == 'b0100) P_7seg = 'b00001001; //9

if (MK_IN == 'b0010) P_7seg = 'b00001010; //A

if (MK_IN == 'b0001) P_7seg = 'b00111000; //B

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 89

end

MK_OUT = 'b0001;

state = 4;

end

4: begin

if (MK_IN == 'b1000) P_7seg = 'b10011100; //C

if (MK_IN == 'b0100) P_7seg = 'b01101000; //D

if (MK_IN == 'b0010) P_7seg = 'b00011100; //E

if (MK_IN == 'b0001) P_7seg = 'b00011110; //F

state = 0;

endcase

end

endmodule

Result:

Staff’s Sign: Date:

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 90

EXPERIMENT NO:3(a)

NAME OF THE EXPERIMENT: DC Motor

AIM: HDL Code to control speed, direction of dc motor

THEORY: A DC motor is any of a class of rotary electrical machines that converts direct current

electrical energy into mechanical energy. The most common types rely on the forces produced

by magnetic fields. Nearly all types of DC motors have some internal mechanism, either

electromechanical or electronic, to periodically change the direction of current flow in part of

the motor.

CODE:

module MOTOR_DC(

input P_Clk,

output reg [1:0] P_DCM, // DC Motor dir control

output reg P_DCMEN //DC Motor enable PWM

);

reg [20:0] count = 0;

reg [16:0] dur = 0;

reg dir = 0;

parameter speed = 100000; //change this value for speed

parameter duration = 1000; //change this value for changing direction timing

always @(posedge P_Clk)

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 91

begin
count = count + 1;

if (count == speed)

begin

count = 0;

P_DCMEN = ~P_DCMEN;

if (dir == 0)

P_DCM = 'b01; //Clockwise

else

P_DCM = 'b10; //Anti-Clockwise

dur = dur + 1;

if(dur == duration)

begin

end

end

end

dur = 0;

dir = ~dir;

endmodule

Result:

Staff’s Sign: Date:

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 92

EXPERIMENT NO: 3(b)

NAME OF THE EXPERIMENT: STEPPER MOTOR

AIM: HDL Code to control speed, direction of stepper motor.

THEORY: A Stepper Motor or a step motor is a brushless, synchronous motor which divides

a full rotation into a number of steps. Unlike a brushless DC motor which rotates continuously

when a fixed DC voltage is applied to it, a step motor rotates in discrete step angles. The

Stepper Motors therefore are manufactured with steps per revolution of 12, 24, 72, 144, 180,

and 200, resulting in stepping angles of 30, 15, 5, 2.5, 2, and 1.8 degrees per step. The stepper

motor can be controlled with or without feedback. The stepper motor which we are using has

step angle of 1.8 degree

 .

Stepper motor "step modes" include Full, Half and Microstep. The type of step mode output of

any stepper motor is dependent on the design of the driver. Omegamation™ offers stepper

motor drives with switch selectable full and half step modes, as well as microstepping drives

with either switch-selectable or software-selectable resolutions.

FULL STEP: Standard hybrid stepping motors have 200 rotor teeth, or 200 full steps per

revolution of the motor shaft. Dividing the 200 steps into the 360° of rotation equals a 1.8° full

step angle. Normally, full step mode is achieved by energizing both windings while reversing

the current alternately. Essentially one digital pulse from the driver is equivalent to one step.

HALF STEP: Half step simply means that the step motor is rotating at 400 steps per revolution.

In this mode, one winding is energized and then two windings are energized alternately,

causing the rotor to rotate at half the distance, or 0.9°. Although it provides approximately 30%

less torque, half-step mode produces a smoother motion than full-step mode.

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 93

MICROSTEP: Microstepping is a relatively new stepper motor technology that controls the

current in the motor winding to a degree that further subdivides the number of positions

between poles. Omegamation microstepping drives are capable of dividing a full step (1.8°)

into 256 microsteps, resulting in 51,200 steps per revolution (.007°/step). Microstepping is

typically used in applications that require accurate positioning and smoother motion over a

wide range of speeds. Like the half-step mode, microstepping provides approximately 30% less

torque than full-step mode.

CODE:

module MOTOR_STEPPER(

input P_Clk,

output reg [3:0] P_STP // DAC Out

);

reg [20:0] count = 0;

reg [16:0] dur = 0;

reg [3:0] stpval = 'b0001;

reg dir = 0;

parameter speed = 1000000; //change this value for speed

parameter duration = 200; //change this value for changing direction timing

always @(posedge P_Clk)

begin

count = count + 1;

if (count == speed)

begin

count = 0;

P_STP = stpval;

if (dir == 0)

begin

end

else

begin

stpval = stpval << 1;

if (stpval == 'b0000) stpval = 'b0001;

stpval = stpval >> 1;

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 94

if (stpval == 'b0000) stpval = 'b1000;

end

dur = dur + 1;

if(dur == duration)

begin

end

end

end

dur = 0;

dir = ~dir;

endmodule

Result:

Staff’s Sign: Date:

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 95

EXPERIMENT NO:4

NAME OF THE EXPERIMENTS: ADC

AIM: HDL Code to accept analog signal, temperature sensor and display the data on LCD or

seven segment display.

THEORY: In electronics, an analog-to-digital converter (ADC, A/D, or A-to-D) is a system

that converts an analog signal, such as a sound picked up by a microphone or light entering

a digital camera, into a digital signal. An ADC may also provide an isolated measurement such as an

electronic device that converts an input analog voltage or current to a digital number representing

the magnitude of the voltage or current. Typically the digital output is a two's complement binary

number that is proportional to the input, but there are other possibilities.

CODE:

module ADC_POT(

input P_Clk,

input [7:0] P_ADC, // ADC Data

input ADC_INT, // ADC INT

output reg ADC_WR, // ADC WR

output reg [7:0] P_LED

);

reg [4:0] count = 0;

reg await = 0;

always @(posedge P_Clk)

begin

if (count == 0)

begin

end;

ADC_WR = 0;

await = 1;

if (count == 5)

https://en.wikipedia.org/wiki/Electronics
https://en.wikipedia.org/wiki/Analog_signal
https://en.wikipedia.org/wiki/Microphone
https://en.wikipedia.org/wiki/Digital_camera
https://en.wikipedia.org/wiki/Digital_signal_(signal_processing)
https://en.wikipedia.org/wiki/Electronic_device
https://en.wikipedia.org/wiki/Voltage
https://en.wikipedia.org/wiki/Electric_current
https://en.wikipedia.org/wiki/Two%27s_complement
https://en.wikipedia.org/wiki/Two%27s_complement

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 96

begin

end

if(await == 0)

begin

ADC_WR = 1;

await = 0;

if(ADC_INT == 0)

begin

end

end

P_LED = P_ADC;

await = 1;

if (await == 1) count = count + 1;

if (count == 10) count = 0;

end

endmodule

Result:

Staff’s Sign: Date:

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 97

EXPERIMENT NO :5

NAME OF THE EXPERIMENT: Sine, Square, Triangle, Ramp using DAC.

THEORY: In electronics, a digital-to-analog converter (DAC, D/A, D2A, or D-to-A) is a system
that converts a digital signal into an analog signal. An analog-to-digital converter (ADC)
performs the reverse function.

There are several DAC architectures; the suitability of a DAC for a particular application
is determined by figures of merit including: resolution, maximum sampling frequency and
others. Digital-to-analog conversion can degrade a signal, so a DAC should be specified that has
insignificant errors in terms of the application

A). Sine waveform:

AIM: To generate sine waveform using DAC

CODE:

module DAC_SINE(

input P_Clk,

output reg [7:0] P_DAC, // DAC Out

output reg DAC_WR // DAC WR

);

reg [4:0] count = 0;

reg [8:0] i = 0;

reg [7:0] sine[0:255];

initial

begin

$readmemh("DAC_SINE.lst",sine);

end

always @(posedge P_Clk)

begin

if (count == 0)

begin

i = i + 1;

https://en.wikipedia.org/wiki/Electronics
https://en.wikipedia.org/wiki/Digital_signal_(signal_processing)
https://en.wikipedia.org/wiki/Analog_signal
https://en.wikipedia.org/wiki/Analog-to-digital_converter
https://en.wikipedia.org/wiki/Hardware_architecture
https://en.wikipedia.org/wiki/Figures_of_merit
https://en.wikipedia.org/wiki/Resolution_(audio)
https://en.wikipedia.org/wiki/Sampling_frequency
https://en.wikipedia.org/wiki/Sampling_frequency

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 98

end

P_DAC = sine[i];

if(i == 255) i = 0;

if (count == 1) DAC_WR = 1;

if (count == 3) DAC_WR = 0;

end

count = count + 1;

if (count == 10) count = 0;

endmodule

Result:

Staff’s Sign: Date:

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 99

B). Square waveform:

AIM: To generate square waveform using DAC

CODE:

module DAC_SQUARE(

input P_Clk,

output reg [7:0] P_DAC, // DAC Out

output reg DAC_WR // DAC WR

);

reg [17:0] count = 0;

always @(posedge P_Clk)

begin

if (count == 0) P_DAC = 0;

if (count == 2) DAC_WR = 1;

if (count == 10) DAC_WR = 0;

if (count == 50000) P_DAC = 'hFF;

if (count == 50002) DAC_WR = 1;

if (count == 50010) DAC_WR = 0;

count = count + 1;

if(count == 100000) count = 0;

end

endmodule

Result:

Staff’s Sign: Date:

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 100

C). Triangle waveform:

AIM: To generate triangle waveform using DAC.

CODE:

module DAC_TRIANGLE(

input P_Clk,

output reg [7:0] P_DAC, // DAC Out

output reg DAC_WR // DAC WR

);

reg [3:0] count = 0;

reg [7:0] i = 0;

reg dir = 0;

always @(posedge P_Clk)

begin

if (count == 0)

begin

if (dir == 0)

begin

end

else

begin

end

i = i + 1;

if(i == 255) dir = 1;

i = i - 1;

if(i == 0) dir = 0;

P_DAC = i;

end

if (count == 1) DAC_WR = 1;

if (count == 3) DAC_WR = 0;

end

count = count + 1;

if (count == 10) count = 0;

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 101

endmodule

Result:

Staff’s Sign: Date:

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 102

D). Ramp waveform:

AIM: To generate Ramp waveform using DAC.

CODE:

module DAC_SAWTOOTH(

input P_Clk,

output reg [7:0] P_DAC, // DAC Out

output reg DAC_WR // DAC WR

);

reg [3:0] count = 0;

always @(posedge P_Clk)

begin

if (count == 0)

begin

end

P_DAC = P_DAC + 1;

if(P_DAC == 255) P_DAC = 0;

if (count == 1) DAC_WR = 1;

if (count == 3) DAC_WR = 0;

end

count = count + 1;

if (count == 10) count = 0;

endmodule

Result:

Staff’s Sign: Date:

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 103

EXPERIMENT NO:6

NAME OF THE EXPERIMENT: Elevator.

AIM: HDL Code to simulate Elevator operation.

THEORY: An elevator or lift is a type of vertical transportation that moves people or goods

between floors (levels, decks) of a building, vessel, or other structure. Elevators are generally

powered by electric motors that either drive traction cables and counterweight systems like a

hoist, or pump hydraulic fluid to raise a cylindrical piston like a jack.

CODE:

Module elevator_fpga(clk,co1,row1,out1);

Input clk;

Input[3:0]co1;

Output reg[3:0]row1;

Output reg[7:0]out1;

Reg[15:0]dely=16’b0000000000000000;

Reg iclk;

Reg test;

Reg[3:0]row;

Reg[3:0]col1;

Reg[3:0]row2;

Reg[3:0]num,pnum;

Reg k;

Reg[7:0]mem[15:0];

Initial

Begin

Mem[0]=8’b00111111;

Mem[1]=8’b00000110;

Mem[2]=8’b01011011;

https://en.wikipedia.org/wiki/Transportation
https://en.wikipedia.org/wiki/Deck_(building)
https://en.wiktionary.org/wiki/vessel
https://en.wikipedia.org/wiki/Hoist_(device)
https://en.wikipedia.org/wiki/Hydraulic_jack

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 104

Mem[3]=8’b01001111;

Mem[4]=8’b01100110;

Mem[5]=8’b01101101;

Mem[6]=8’b01111101;

Mem[7]=8’b00000111;

Mem[8]=8’b01111111;

Mem[9]=8’b01101111;

Mem[10]=8’b01110111;

Mem[11]=8’b01111100;

Mem[12]=8’b01011000;

Mem[13]=8’b01011110;

Mem[14]=8’b01111001;

Mem[15]=8’b01110001;

Pnum=4’b0000;

End

always@(posedge clk)

begin

delay=delay+1;

iclk=delay[3];

k=delay[15]

end

always@(posedge clk)

begin

if(co1==4’b1110)begin test =1’b1;end

else if(col==4’b1101)begin test =1’b1;end

else if(col==4’b1011)begin test =1’b1;end

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 105

else if(col==4’b1111)begin test =1’b1;end

else test=1’b0;

end

always@(posedge test)

begin

col1=col;

row2=row;

end

always@(posedge iclk)

begin

if(row==4’b1110)begin row=4’b1101;end

else if(row==4’b1101)begin row=4’b1011;end

else if(row==4’b1011)begin row=4’b0111;end

else row=4’b1110;

row1=row;

end

always@(posedge test)

begin

if(col1==4’b1110 && row2==4’b1110)

num=0;

else if(col1==4’b1101 && row2==4’b1110)

num=1;

else if(col1==4’b1011 && row2==4’b1110)

num=2;

if(col1==4’b0111 && row2==4’b1110)

num=3;

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 106

else if(col1==4’b1110 && row2==4’b1101)

num=4;

else if(col1==4’b1101 && row2==4’b1101)

num=5;

else if(col1==4’b1011 && row2==4’b1101)

num=6;

else if(col1==4’b0111 && row2==4’b1101)

num=7;

else if(col1==4’b1110 && row2==4’b1011)

num=8;

else if(col1==4’b1101 && row2==4’b1011)

num=9;

else if(col1==4’b1011 && row2==4’b1011)

num=10;

else if(col1==4’b0111 && row2==4’b1011)

num=11;

else if(col1==4’b1110 && row2==4’b0111)

num=12;

else if(col1==4’b1101 && row2==4’b0111)

num=13;

else if(col1==4’b1011 && row2==4’b0111)

num=14;

else if(col1==4’b0111 && row2==4’b0111)

num=15;

end

always@(posedge k)

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 107

begin

if(!(num==pnum))

begin

if(num>pnum)

begin

pnum=pnum+1;

end

else if(num<pnum)

begin

pnum=pnum-1;

end

end

end

always@(pnum)

begin

out1<=mem[pnum];

end

endmodule

Result:

Staff’s Sign: Date:

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 108

Beyond Syllabus: 8-BIT RIPPLE CARRY ADDER

Aim: To design and verify the working of an 8-bit ripple carry adder.

Block Diagram:

Theory:

Ripple carry adder can be created by cascading multiple full adders together. Each full adder inputs Cin,

which is the Cout of the previous adder. This kind of adder is a Ripple Carry Adder, since each carry bit

"ripples" to the next full adder. The first (and only the first) full adder may be replaced by a half adder.

The block diagram of 8-bit Ripple Carry Adder is shown above. The corresponding Boolean expressions

given here are to construct a ripple carry adder. In the half adder circuit the sum and carry bits are defined

as,

Sum = A ⊕ B

Carry = AB

In the full adder circuit the Sum and Carry output is defined by inputs A, B and Carry in (C) as

Sum=ABC + ABC + ABC + ABC

Sum= ABC + ABC + ABC + ABC

= (AB + AB) C + (AB + AB) C

= (A ⊕ B) C + (A ⊕ B) C

=A ⊕ B ⊕ C

Carry= ABC + ABC + ABC + ABC

= AB + (AB + AB) C

= AB + (A ⊕ B) C

Verilog Code:

module cra(a,b,cin,sum,cout);

input [7:0] a,b;

input cin;

output [7:0] sum;

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 109

output cout;

wire c1,c2,c3,c4,c5,c6,c7;

assign sum[0] = a[0] ^ b[0] ^ cin;

assign c1 = a[0] & b[0] | b[0] & cin | a[0] & cin;

assign sum[1] = a[1] ^ b[1] ^ c1;

assign c2 = a[1] & b[1] | b[1] & c1 | a[1] & c1;

assign sum[2] = a[2] ^ b[2] ^ c2;

assign c3 = a[2] & b[2] | b[2] & c2 | a[2] & c2;

assign sum[3] = a[3] ^ b[3] ^ c3;

assign c4 = a[3] & b[3] | b[3] & c3 | a[3] & c3;

assign sum[4] = a[4] ^ b[4] ^ c4;

assign c5 = a[4] & b[4] | b[4] & c4 | a[4] & c4;

assign sum[5] = a[5] ^ b[5] ^ c5;

assign c6 = a[5] & b[5] | b[5] & c5 | a[5] & c5;

assign sum[6] = a[6] ^ b[6] ^ c6;

assign c7 = a[6] & b[6] | b[6] & c6 | a[6] & c6;

assign sum[7] = a[7] ^ b[7] ^ c7;

assign cout = a[7] & b[7] | b[7] & c7 | a[7] & c7;

endmodule

Test Bench:

module tb;

reg [7:0] a,b;

reg cin;

wire [7:0] sum;

wire cout;

cra R1 (a,b,cin,sum,cout);

initial

begin

a=8'b0000_0010;

b=8'b0001_0100;

cin=0;

#100;

a=8'b0000_0010;

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 110

b=8'b0001_0100;

cin=0;

#100;

a=8'b0000_0010;

b=8'b0011_0100;

cin=0;

#100;

a=8'b0000_0010;

b=8'b0011_0100;

cin=0;

#100;

a=8'b0000_0010;

b=8'b1111_0100;

cin=0;

#100;

a=8'b0000_1111;

b=8'b0000_0100;

cin=0;

#100;

end

endmodule

Simulation results:

Staff’s Sign: Date:

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 111

PIN PORTS:

Matrix KeyPad IN

#NET "MK_IN[0]" LOC = P62;

#NET "MK_IN[1]" LOC = P61;

#NET "MK_IN[2]" LOC = P58;

#NET "MK_IN[3]" LOC = P57;

Matrix KeyPad OUT

#NET "MK_OUT[0]" LOC = P51; #NET

"MK_OUT[1]" LOC = P50; #NET

"MK_OUT[2]" LOC = P48; #NET

"MK_OUT[3]" LOC = P46;

7 SEG BUS

#NET "P_7seg[0]" LOC = P97;

#NET "P_7seg[1]" LOC = P95;

#NET "P_7seg[2]" LOC = P94;

#NET "P_7seg[3]" LOC = P93;

#NET "P_7seg[4]" LOC = P92;

#NET "P_7seg[5]" LOC = P88;

#NET "P_7seg[6]" LOC = P87;

#NET "P_7seg[7]" LOC = P85;

7 SEG Digit Select Lines

#NET "P_dig[0]" LOC = P6;

#NET "P_dig[1]" LOC = P5;

#NET "P_dig[2]" LOC = P2;

#NET "P_dig[3]" LOC = P1;

LED

#NET "P_LED(0)" LOC = P98;

#NET "P_LED(1)"LOC = P99;

#NET "P_LED(2)" LOC = P100;

#NET "P_LED(3)" LOC = P101;

#NET "P_LED(4)" LOC = P102;

#NET "P_LED(5)" LOC = P104;

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 112

#NET "P_LED(6)" LOC = P105;

#NET "P_LED(7)" LOC = P111;

#NET "P_LED(8)" LOC = P112;

#NET "P_LED(9)" LOC = P114;

#NET "P_LED(10)" LOC = P115;

#NET "P_LED(11)" LOC = P116;

#NET "P_LED(12)" LOC = P117;

#NET "P_LED(13)" LOC = P118;

#NET "P_LED(14)" LOC = P119;

#NET "P_LED(15)" LOC = P120;

ADC

#NET "P_ADC(0)" LOC = P12;

#NET "P_ADC(1)" LOC = P14;

#NET "P_ADC(2)" LOC = P15;

#NET "P_ADC(3)" LOC = P16;

#NET "P_ADC(4)" LOC = P17;

#NET "P_ADC(5)" LOC = P21;

#NET "P_ADC(6)" LOC = P22;

#NET "P_ADC(7)" LOC = P23;

#NET "ADC_WR" LOC = P24;

#NET "ADC_INT" LOC = P26;

DAC

#NET "P_DAC(0)" LOC = P80;

#NET "P_DAC(1)" LOC = P79;

#NET "P_DAC(2)" LOC = P78;

#NET "P_DAC(3)" LOC = P75;

#NET "P_DAC(4)" LOC = P74;

#NET "P_DAC(5)" LOC = P45; #J5 conn Pin 1

#NET "P_DAC(6)" LOC = P67;

#NET "P_DAC(7)" LOC = P66;

#NET "DAC_WR" LOC = P81;

LCD

#NET "LCD_RS" LOC = P7;

#NET "LCD_EN" LOC = P8;

#NET "P_LCD(0)" LOC = P97;

#NET "P_LCD(1)" LOC = P95;

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 113

#NET "P_LCD(2)" LOC = P94;

#NET "P_LCD(3)" LOC = P93;

#NET "P_LCD(4)" LOC = P92;

#NET "P_LCD(5)" LOC = P88;

#NET "P_LCD(6)" LOC = P87;

#NET "P_LCD(7)" LOC = P85;

#STEPPER MOTOR

#NET "P_STP(0)" LOC = P29;

#NET "P_STP(1)" LOC = P30;

#NET "P_STP(2)" LOC = P32;

#NET "P_STP(3)" LOC = P33;

#DC MOTOR

NET "P_DCM(0)" LOC = P82;

NET "P_DCM(1)" LOC = P83;

NET "P_DCMEN" LOC = P84;

Main Clock Line

NET "P_Clk" LOC = P56;

#NET "sw1" LOC = P121 ;

#NET "sw2" LOC = P123 ;

#NET "led2" LOC = P120 ;

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 114

VIVA QUESTIONS:

1. Expand VHDL.What is the difference between VHDL and Verilog?

2. What is the difference between (i) signal and variable (ii) generic & Parameter (iii) function &

procedure (iv) task & function (v) always & initial (vi) register & variable (vii) signal & wire

3. What are the different styles of models in VHDL and Verilog?

4. What are the operators in VHDL & Verilog?

5. Which is an operator is having most priority?

6. What is meant by sensitivity list?

7. Give the Following syntax in HDL (i) if, for, function, procedure (ii) while, case.

8. What is the operating frequencyofyour FPGA?

9. Expand FPGA &ASICWhat are the data types in VHDL?

10. What are the data types in Verilog?What is delta time?

11. What is the difference between (0 to 3) & (3 downto 0)?

12. Write the truth table & Excitation table for D filp flop, SR , T, JK

13. What are the file operations in Verilog?

14. What is meant by synthesis?

15. Write the flow chart for synthesis process?

16. What is the difference between combination circuit & sequential circuit?

17. What is the difference between latch & Flip flop?Write a Verilog code to swap contents of two

registers with and without a temporary register?

18. In a pure combinational circuit is it necessary to mention all the inputs in sensitivity list? If yes,

why?What is the difference between wire and reg?

19. Give only two xor gates one must function as buffer and another as not gate?

20. Build a 4:1 mux using only 2:1 mux?What are shift operators in HDL?

21. What are the logical operators in VHDL & Verilog?

22. What is the gate density of your FPGA?

23. What is data flow model, structural model, behavioral model?How you invoke from VHDL to

Verilog and vice versa?

24. What is the difference between SR flip flop & JK flip flop?

25. What is the difference between synchronous reset & Asynchronous reset?

26. What is the difference between stepper motor & DC motor?

27. What is the step size of stepper motor?

28. What is mux and demux?

29. What is encoder and decoder?

30. What is the difference between encoder & priority encoder?

31. What is binding?

32. What is the difference between “bit” and “std_logic”?

HDL Manual 2017-scheme

Dept. of E&C, BGSIT, BG Nagara Page 115

33. What are the std_logic values?

34. What are the different types of buffers are in Verilog HDL?

35. What is the difference between dc motor and stepper motor?

36. What are the applications of dc motor and stepper motor?

37. Write the syntax for casex and casez.What is screen time?

38. Draw the simulation waveform for D-latch using signal assignment

and variable assignment statements inside the process.

39. What is SRAM?

40. What is mealy model and Moore model?

41. What are user defined types?

42. What are the packages are available in VHDL? And also give the syntax for
package

43. How to call procedure and function within the process?

44. Give the syntax for arrays in VHDL and Verilog.

45. What are the VHDL file processing?

